OKLAHOMASTATE UNIVRSITY
 SCHOOL OF ELECTRICAL AND COMPUTERENGINEERING SCHOOLOFMECHANICALANDAEROSPACEENGINEERING

ECEN 4413/MAE 4053

Automatic Control Systems Spring 2007

Midterm Exam \#1

Choose any four out of five problems.
Please specify which four listed below to be graded:

1) \qquad ; 2) \qquad ; 3) \qquad ; 4) \qquad ;

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

For the RLC circuit shown below, consider voltage source $e(t)$ is the input (u) and voltage across capacitor C is the output (y) and then find various system representations:
a) input-output representation (described by ordinary differential equations)
b) transfer function, $H(s)=Y(s) / U(s)$
c) state space representation, $\dot{x}=A x+B u, \quad y=C x+D u$ and its state diagram

Problem 2:

Apply the gain formula to the SFG shown below to find the transfer functions of $\frac{Y_{5}}{Y_{1}}$ and $\frac{Y_{5}}{Y_{2}}$.

Problem 3:

The block diagram of a feedback control system is shown below. Find the following transfer functions:
a) $\left.\frac{Y(s)}{R(s)}\right|_{N=0},\left.\frac{Y(s)}{E(s)}\right|_{N=0},\left.\frac{Y(s)}{N(s)}\right|_{R=0}$
b) Find the output $Y(s)$ when $R(s)$ and $N(s)$ are applied simultaneously.

Problem 4:

Find a minimal state space representation for the MIMO system (using only three state variables) described by

$$
\begin{aligned}
& \ddot{y}_{1}(t)-5 \dot{y}_{1}(t)+10 y_{1}(t)+5 y_{2}(t)=u_{1}(t)+2 \dot{u}_{1}(t)-\ddot{u}_{1}(t) \\
& \dot{y}_{2}(t)+4\left[y_{2}(t)-y_{1}(t)\right]=2 \dot{u}_{2}(t)-u_{1}(t)
\end{aligned}
$$

Problem 5:

Write the equation of motion for the linear translational system shown below. Draw the state diagram using a minimum number of integrators. Write the state equation from the state diagram. Find the transfer functions $Y_{1}(s) / F(s)$ and $Y_{2}(s) / F(s)$.

(a)

